

MOVE THE WORLD FORW>RD MITSUBISHI HEAVY INDUSTRIES GROUP

VRF multi-system Air Conditioners

MITSUBISH

XXZ

New Climate & Energy Solution

New Climate & Energy Solution

The new Mitsubishi Heavy Industries KXZ VRF series delivers high performance in cooling and heating for all commercial applications. The KXZ series provides the highest level of design flexibility, efficiency as well as operational functions.

This brochure highlights the key benefits and new and improved functions of our latest VRF technology.

TEMPERATURE CONTROL FOR **TODAY & TOMMORROW**

▶ mhiae.com

Harmonize with the world

Harmonize with the earth

- Global Environment
- Improved Energy Efficiency
- Toughness

Harmonize with people

- Wellness & Comfort
- Serviceability

Harmonize with buildings

- Design Flexibility

CONTENTS

Introduction	2								
New Design - 6 concepts -	4								
Global Environment R32									
Wide design flexibility	6								
1. Outdoor units	6								
2. Indoor units	7								
3. Flexible pipe installation	7								
4. Safety system	8								
mproved Energy Efficiency	10								
Increased seasonal efficiencies	10								
1. New scroll compressor	11								
2. Improved heat exchanger	12								
3. Optimized air flow structure	12								
4. KX VRF redesigned with VTCC	13								

Wellness & Comfort	14
Continuous heating with two defrost modes	14
Toughness	15
Wide range of operation	15
Serviceability	15
Easy access to the control box	15
Specifications	16
Time Saving Software	20
BIM	20
e-seasonal	20
e-solution	21
MHI e-service App	21
Building Management Systems	22
Controls Network Overview	23

New Design - 6 concepts -

The redesigned model with R32 refrigerant has been engineered by the following 6 concepts.

Global Environment

- Reduce CO2 emission by about 70%

2 Wide Design Flexibility

- New exterior design to fit the scenery
- Various type of indoor units available
- Wider limitation of piping installation
- Flexible selection of safety systems

3 Improved Energy Efficiency

- Higher SCOP & SEER
- New R32 scroll compressor
- Heat exchanger with small heat transfer pipe
- Optimized fan and flow path design
- VTCC+ : advanced variable temperature and capacity control

- Wellness & Comfort 4
 - Advanced continuous heating

Toughness 5

- Cooling use in high ambient temperature

Serviceability 6

- Easy access to replacement parts

Harmonize with the earth

Concept 1) Global Environment

Meet our new R32 KXZ3 series of heat pumps, the perfect climate solution for heating and cooling commercial and industrial applications.

By optimizing the KXZ3 series with R32 refrigerant has increased

- Energy efficiency
- Cost effectiveness
- Overall performance Reduction in

The Decision by MHI to transition to a new refrigerant is driven by many factors. KXZ3 with the use of R32 refrigerant, lower GWP (675) than R410A (2088)

- 1. A single component, easy to handle refrigerant
- 2. Known as a component of the blend R410A (50% R32, 50% R125)
- 3. Already used in Air-Conditioning systems worldwide
- 4. Zero Ozone Depletion
- 5. Superior Energy Efficiency vs. R410A
- 6. Reduced refrigerant charge vs. R410A
- 7. Easy to recycle

Concept 2) Wide Design Flexibility

New exterior design to fit the scenery

1. Outdoor units - Product line-up -

Our line-up and limitation of use make it possible to adopt wider range of installation on commercial buildings.

Compact design

One of the smallest in the industry

The KXZ3 series has reduced the installation space with the integral structure of the heat exchanger and the mechanical components.

The total footprint has become more compact compared to our previous model.

Combination use is also possible

The new product line-up of the KXZ3 series can also be installed to offer solutions with a combination of 3 outdoor units.

-

Connectability

KXZ3 - Standard Connectable Indoor Units

Increased number of connectable units and max capacity connection.

	HP	8	10	12	16	18	20	22	24	26	28	30	32	34	36
Standard KXZ3	Numbers	22	28	33	45	50	56	61	67	73	80	80	80	80	80
	IU Capacity connection						5	0 - 15	0%(*1)					

Various type of indoor units available

2. Indoor units - Product line-up -

Wide variety of 14 types 78 models

	Type		Capacity : HP	0.5	0.8	1	1.25	1.6	2	2.5	3.2	4	5	6	8	10
	.,,,,	1	Model Code : kW	1.5	2.2	2.8	3.6	4.5	5.6	7.1	9.0	11.2	14.0	16.0	22.4	28.0
	4way	FDT				•	•	•	•	•	•	•	•	•		
	4way Compact	FDTC		•	•	•	•	•	•							
Ceiling Cassette	2way	FDTW				•		•	•	•	•	•	•			
	1way	FDTS						•		•						
	1way Compact	FDTQ			•	•	•									
	High Static Pressure	FDU						•	•	•	•	•	•	•	•	•
Duct	Low/Middle Static Pressure	FDUM			•	•	•	•	•	•	•	•	•	•		
Connected	Low Static Pressure (thin)	FDUT		•	•	•	•	•	•	•						
	Compact & Flexible	FDUH			•	•	•									
Wall mounte	d	FDK	-	•	•	•	•	•	•	•	•					
Ceiling Susp	ended	FDE					•	•	•	•		•	•			
	2way	FDFW				•		•	•		٦					
Floor Standing	With Casing	FDFL								•		(omi	ng s	oon	
	Without Casing	FDFU				•		•	•	•	J					

Wider limitation of piping installation

To the first branch: Max**130m**

Furthest indoor unit: Actual length:

160m

Piping length after the first branch (*2)

мах **90** Мах

(*2): The elifference

The difference between the longest and the shortest indoor unit piping from the first branch must be within 40m. (MAX85m)

Max height difference between indoor units

Max 30m

Flexible selection of safety systems

4. Safety system

R32 refrigerant is categorized as mildly flammable (A2L) by International Standard ISO817. Safety measures specified in safety standard IEC60335-2-40 Ed.6.0. must be observed when installing or using R32 refrigerant equipment. The necessity of safety measures and the type and number of required safety equipment depend on the conditions of each room in the building.

1. Refrigerant	2. Safety	3. Shut-off	4. Ventilator
leak detector	alarm	valve	MHI option has not been prepared.

The necessity of safety measures and the type and number of required safety equipment depend on the conditions of each room in the building. Safety equipment units are grouped into the following categories.

Example of the safety system

- 1. Refrigerant leak detected
- 2. Safety alarm is sounded, and flow of refrigerant is blocked.
- (a) : Refrigerant leak detector detects refrigerant leakage in the room.
 (b)-1 : Safety alarm sounds and light alerts to signal refrigerant leakage.
- (b)-2 : Shut-off valve in the refrigerant pipe closes and blocks the flow of refrigerant.

Our safety system offers wide flexibility of installation for safety measures. Safety system can be installed only to the rooms that are necessary.

Concept³ Improved Energy Efficiency

Higher SCOP & SEER

Increased seasonal efficiencies

Our KXZ3 series provide high performance and excellent energy savings across all ranges. This is achieved by the optimized heat exchangers with the increased capacities and the advanced energy efficient compressor.

Heating mode Comparison of SCOP

From the models beyond 450 the KXZ3 series are measured with combinations

Features

Improved seasonal efficiency is achieved by

- New R32 scroll compressor with the improved scroll mechanism and motor.
 - Heat exchanger with small heat transfer pipe (07)
 - Optimized fan and flow path design
 - 4 Advanced VTCC⁺ control

New R32 scroll compressor with the improved scroll mechanism and motor

New scroll compressor

With the adaptation of new components and its optimization, the KXZ3 series is now available in R32 refrigerant with a higher efficiency and a wide operation range. The new compressor uses the latest compressor technology and has proven to be extremely reliable.

Expansion of minimum | Rotation speed of the compressor

Achieving precise performance control

Improved energy savings and comfort at set temperature

Set Temperature

Heat exchanger with small heat transfer pipe (07.0)

2 Improved heat exchanger

Adopting a slimmer 7.0mm copper pipe. By increasing the number of the copper pipe and fin, the performance level has improved while keeping the heat exchanger size small.

KXZ3

With the adaptation of the new slim heat exchanger lesser refrigerant load and more compact sizing, achieved while keeping the overall permeance and the efficiency

Optimized fan and flow path design

Optimized air flow structure

Pressure loss in flow path is minimized with the newly designed impeller and optimized path, dedicating better energy efficiency. Regulated air flow by optimized flow path leads to more efficient heat exchange.

KXZ2

Extended external static pressure

KXZ2

KXZ3

Flexibility to meet installation location needs.

VTCC⁺ : advanced variable temperature and capacity control

4 KX VRF redesigned with VTCC

(Variable Temperature and Capacity Control)

New VRF control VTCC+ adjusts the target pressure of the refrigerant automatically according to the requirement load of the indoor rooms in partial load conditions.

These smooth adjustments ensure an optimal capacity usage of the indoor units as well as maximised energy savings. Ultimately this also increases comfort for the user.

- Most balanced mode between capacity control and energy saving
- · Target pressure is automatically adjusted according to heating/cooling requirement, which achieve energy saving
- · Advanced capacity control achieves smooth temperature control close to set temperature
- Suitable for heating/cooling demand varies among the room in the building

* Saving mode(U-High) compared to standard mode in the following conditions Cooling : Outside temperature 20°CDB, Partial load factor 21%, Set temperature 27°C Heating : Outside temperature 12°CDB/11°CWB, Partial load factor 15%, Set temperature 20°C

New Saving mode

- Most energy saving mode
- Suitable for low heating/cooling demand in the building
- Target pressure is adjusted lower/higher in heating/cooling

Standard mode

- . Capacity is maximised
- Suitable for high heating/cooling demand in the building . · Target pressure is adjusted steady to maximize the capacity

Harmonize with people

Wellness & Comfort (Concept 4)

Advanced continuous heating

Two defrost modes are prepared, and the defrost is automatically switched according to the amount of frost formation. Hot gas defrost mode enables non-stop heating during defrost operation with of hot gas bypass.

Enhanced heating operation functions

The comparison between the air outlet temperature of normal defrost and hot gas defrost

- · Reduction in the time period of temperature drop caused by defrost
- · Mitigation in temperature drop caused by defrost

Cooling use in high ambient temperature

Wide range of operation

Our new advanced technology has expanded the heating and cooling operation range.

KXZ series permits an extensible system design with a heating range operation down to -25°C and a cooling range operation up to 52°C.

* With limitation to piping length and height difference between indoor and outdoor units.

Harmonize with people

Easy access to replacement parts

Easy access to the control box

The control box is in the upper part of the unit and can now be easily accessed by taking off the upper front panel.

- The total amount of data that can be checked from the remote controller has increased
- Can save the data of the operating conditions 30~180 minutes before malfunction after the power is off (To save data for more than 30 minutes settings must be changed)
- Can now output air flow volume of the outside fan
- Can now record the running hours of the fan motor

Automatically produced test-run report

(or uni	9	CL	istom	er n	ame:	_		tra	ding	compa	iny	ī	Deh	run very	date date	: At	ig. 7 ly 25	, 200	3		Tes Wes	t run i ather:	operato cloudy	r: Tarc	Mitsu	ibis
utdoor It type Outdoor unit	Sjelan Nor D It fe solene's	Custor unit withere	Time	Denter Not	hitepe N	Outor Impetia [1]	62 25000 875	iov posous APsc	hd achayr 151	hel octorpel IC1	Argenten Synait Bocken (21)	0utur #1 [0]	12 10	83 (C)	с л (0)	10000 172 (X)	14 15 10	Specific Separation (42)	cus	HP control	Ta control	CS canto	LP control	Other control	Pip Acriate 41	Accessor Sector	Carpo Carpo Hile
Вочатных	1	31	17.90	Codes	225	35	125	0.60	29	- 20	35	45	21	r - 1	0	0		0	077	-	-	-	-		- 10	T	<u> </u>
		58	17.21	Coding	225	29	122	0.7	29	29	22	-62	31		0	0	-	0	OFF	-	-	-	- 1	-	+	-	
		31	17.92	Coding	220	35	1,2	0,85	29	29	39	45	21		8	0		55	OPT	-	-	-	-		1		
		51	17.82	Coding	220	29	\$27	0,49	29	29	22	61	31		6	0		40	OFF	-	-	-	-				
		31	17:94	Coding	220	27	1,27	0,43	29	29	35	\$4	30		\$	0		57	OPP	-	-	-	-				
		51	17部	Coding	220	17	1,3	3,4	29	29	22	69	30		10	0		66	OFF	-	-	-	-				
_		21	17.96	Coding	220	27	1,2	0,42	30	29	35	70	30		11	0	1	72	OPT	-	-	-	-	_			17
		51	17:27	Coding	220	17	1,3	947	30	28	22	60	30		10	0		47	OFF	-	-	-	-				
		31	17:05	Coding	220	27	1,2	0,49	30	38	35	\$7	30		10	0		54	011	-	-	-	-				
		51	17.89	Coding	220	17	\$22	0,49	29	29	29	64	30		1	0		56	OFF	-	-	-	-				
		31	17:10	Coding	220	27	135	0,42	29	29	30	69	30		e	0	_	29	OPT	-	-	-	-				
		51	17:11	Coding	220	12	512	041	22	29	22	47	20	_	5	0	_	p	OFF	L = -	-	L.C.,	-				
		31	17:12	Coding	229		£ .	0,49		29		12		ш				7	OPT			1.	-				
		51	17.52	Coding	22	47	10	53.0		12	1 H	10		ш	E-	-9		2	OFF	1.	-	<u> </u>	-				
		31	37:14	Coding	220	-		0,00	29	٠.	- 14			ш			<u> </u>	7	OPT		-	-	-		-	-	-
		51	17.15	Coding	22	n	13	24		÷ .			L2	ш	1×	0		9	GFF	L	-	-	-				
		31	17:16	Coding	2207	-	-		29			1	1	_	2	0	_		_		_	÷.,	-		-	-	-
		31	17:57	Coding	220	17	10	0.68	29	29	28	58	20		1	0	-	62	OFF	-	-	-		L	-	-	-
		24	17:18	Coding	220	27	1,55	0,42	30	01	35	50	45	-	13	14	-	49	05	-	-	-		-	+		-
		21	17.59	Codili	220	17	2.58	041	25	34	28	11	89	-	13	15	-	10	01		-	-		-	+	-	-
		34	17.20	Coding	220	27	1.58	0,41	36	- 06	35	35	24	-	13	15	-	80	05	-	-	-	-	-	-		-
		21	1721	Coding	220	27	10	dut i	28	34	28	76	75	-	102	15	-	10	04	-	-	-	-	-	+	-	-
	-	6	1/22	Loging	220	11	100	10,011	34	- 00	55	11	12	-	- 53	34	-		08	-	-	-		-	+		-
	-	- 1	1723	post inj	220	11	10	0.02	10	-40	10	10	10	-	- 2	14	-	10	0.0	-	-	-		-	+	-	-
		1	11.24	1.1	100	- 21	1.0	10,00	35	- 32		1.0	-	-		1.1	-		00	-	-	-		-	+	-	⊢
	-	- 1	1728	post inj	220	11	1.0	0.03	14	- 44	40	14	10	-	- 2	14	-	10	0.0	-	-	-		-	+	-	-
		1		1.1	100	- 21	1.00	10,000	. 14		40	1		-		1.1	-		00		-			-	+	-	+

Operation data storage during servicing

Operation data storage when a fault occurs

8~12_{HP} (22.4kw ~ 33.5kw)

Technical focus

- Available in the R32 refrigerant
- New exterior design containing cutting edge technology
- High SEER with advanced technology
- VTCC+ : advanced variable temperature and capacity control
- · Compact design with a small total footprint
- Advanced continuous heating

Blue Fin

ντε

FDC224-335

Specifications

Item	N	/lodel	FDC224KXZE3	FDC280KXZE3	FDC335KXZE3				
Nominal horse pov	wer		8HP	10HP	12HP				
Power source				3 Phase 380-415V, 50Hz					
Nominal	Cooling	1.34/	22.4	28.0	33.5				
capacity	Heating	KVV	22.4	28.0	33.5				
Max heating capa	city	kW	25.0	31.5	37.5				
Power Cooling			5.52	8.05	9.69				
consumption	Heating	KVV	4.58	6.35	7.98				
EER			4.06	3.48	3.46				
COP			4.90	4.41	4.20				
SEER			9.16	8.96	8.57				
SCOP			4.82	4.75	4.67				
Exterior dimensions	(HxWxD)	mm		1750×920×760					
Net weight		kg	26	2	274				
Sound Cooling		dB(A)	76	77	82				
power level	Heating	UD(A)	78	83	86				
Sound	Cooling	dB(A)	55	56	60				
pressure level	Heating	UD(A)	55	60	63				
Starting current		Α		5					
Max current		Α	20.7	23.2	25.7				
	Type/GWP			R32 / 675					
Refrigerant	Charge	kg	7.	1	7.7				
	TCO2Eq		4.7	93	5.198				
Refrigerant	Liquid	mm	ø9.52	(3/8")	ø12.7(1/2")				
piping size	Gas	(in)	ø19.05(3/4")	ø22.2	2(7/8")				
Total piping length	1	m		1000					
Outdoor operating	Cooling	°CDB		-15 ~ 52					
temperature range	Heating	°CWB		-25 ~ 16					
Capacity connecti	on	%		50 ~ 150					
Number of connectable indoor uni			22	28	33				

1. The data are measured under the following conditions (ISO-T1, H1). Cooling: Indoor temp. of 27°CDB, 19°CWB, and outdoor temp. of 35°CDB. Heating: Indoor temp. of 20°CDB, and outdoor temp. of 7°CDB, 6°CWB.

2. SEER/SCOP are based on EN14825:2018 and Commission regulation (EU) No.2016/2281. Temperature conditions for calculating SCOP are based on "Average climate" 3. Sound level indicates the value in an anechoic chamber. During operation these values are somewhat higher due to ambient conditions.

4. 'tonne(s) of CO2 equivalent' means a quantity of greenhouse gases- expressed as the product of the weight of the greenhouse gases in metric tonnes and of their global warming potential.

5. Refrigerant contained in the products is a fluorinated greenhouse gas listed in Regulation (EU) No 517/2014.

KXZ Heat pump systems

$16 \sim 24 \text{ HP}$ (44.8kw ~ 67.0kw)

Technical focus

- Available in the R32 refrigerant
- New exterior design containing cutting edge technology
- High SCOP & SEER with advanced technology
- VTCC+ : advanced variable temperature and capacity control
- · Compact design with a small total footprint
- Advanced continuous heating

Blue Fin

ντει

17

Specifications

Item	N	lodel	FDC450KXZVE3	FDC500KXZVE3	FDC560KXZVE3	FDC615KXZVE3	FDC670KXZVE3	
Combination (EDC)	<u>,</u>		224KXZE3	224KXZE3	280KXZE3	280KXZE3	335KXZE3	
)		224KXZE3	280KXZE3	280KXZE3	335KXZE3	335KXZE3	
Nominal horse pov	wer		16HP	24HP				
Power source				3	Phase 380-415V, 50H	2		
Nominal	Cooling	LAM	44.8	50.4	56.0	61.5	67.0	
capacity	Heating	KVV	44.8	50.4	56.0	61.5	67.0	
Max heating capa	city	kW	50.0	56.5	63.0	69.0	75.0	
Power	Cooling	L/M	11.0	13.6	16.1	17.7	19.4	
consumption	Heating	KVV	9.1	10.9	12.7	14.3	16.0	
EER			4.06	3.71	3.48	3.46	3.46	
COP			4.90	4.61	4.41	4.29	4.20	
SEER			9.16	9.02	8.97	8.74	8.57	
SCOP			4.82	4.78	4.75	4.70	4.67	
Net weight kg				524		536	548	
Starting current		A			10			
Max current		A	41.4	43.9	46.4	48.9	51.4	
Refrigerant	Type/GWP				R32 / 675			
nonigorant	Charge	kg		7.1×2		7.1+7.7	7.7×2	
B.(.)	Liquid				ø12.7(1/2")			
piping size	Gas	mm (in)			ø28.58(11/8")			
	Oil equalization	()			ø12.7(1/2")			
Total piping length	1	m			1000			
Outdoor operating	Cooling	°CDB			-15 ~ 52			
temperature range	Heating	°CWB			-25 ~ 16			
Capacity connection	on	%			50 ~ 150			
Number of connecta	ıble indoor ı	units	45	50	56	61	67	

1. The data are measured under the following conditions (ISO-T1, H1). Cooling: Indoor temp. of 27°CDB, 19°CWB, and outdoor temp. of 35°CDB. Heating: Indoor temp. of 20°CDB, and outdoor temp. of 7°CDB, 6°CWB. 2. SEER/SCOP are based on EN14825:2018 and Commission regulation (EU) No.2016/2281. Temperature conditions for calculating SCOP are based on "Average climate". 3. Sound level indicates the value in an anechoic chamber. During operation these values are somewhat higher due to ambient conditions.

4. 'tonne(s) of CO2 equivalent' means a quantity of greenhouse gases- expressed as the product of the weight of the greenhouse gases in metric tonnes and of their global warming potential.

5. Refrigerant contained in the products is a fluorinated greenhouse gas listed in Regulation (EU) No 517/2014.

26~30 HP (72.8kw ~ 84.0kw)

- Available in the R32 refrigerant
- New exterior design containing cutting edge technology
- High SCOP & SEER with advanced technology
- VTCC+ : advanced variable temperature and capacity control
- Compact design with a small total footprint
- Advanced continuous heating

Blue Fin

ντε

Specifications

Item	N	lodel	FDC735KXZVE3	FDC800KXZVE3	FDC850KXZVE3						
			224KXZE3	224KXZE3	280KXZE3						
Combination (FDC)		224KXZE3	280KXZE3	280KXZE3						
			280KXZE3	280KXZE3							
Nominal horse pov	wer		26HP	30HP							
Power source			3 Phase 380-415V, 50Hz								
Nominal Coolin		LAM	72.8	78.4	84.0						
capacity	Heating	KVV	72.8	84.0							
Max heating capa	city	kW	81.5	88.0	94.5						
Power	Cooling	LAM	19.1	21.6	24.1						
consumption	Heating	KVV	15.5	17.3	19.0						
EER			3.81	3.62	3.48						
СОР			4.69	4.53	4.41						
SEER			9.07	9.02	8.97						
SCOP			4.79	4.78	4.75						
Net weight		kg		786							
Starting current		A	15								
Max current		Α	64.6	67.1	69.6						
Pofrigorant	Type/GWP			R32 / 675							
nemgerant	Charge	kg		7.1×3							
	Liquid			ø15.88(5/8")							
Refrigerant piping size	Gas	mm (in)		ø34.92(1 3/8")							
P-P3	Oil equalization	()		ø12.7(1/2")							
Total piping length	ı	m		1000							
Outdoor operating	Cooling	°CDB		-15 ~ 52							
temperature range	Heating	°CWB		-25 ~ 16							
Capacity connecti	on	%		50 ~ 150							
Number of connecta	ble indoor u	units	73	80	80						

1. The data are measured under the following conditions (ISO-T1, H1). Cooling: Indoor temp. of 27°CDB, 19°CWB, and outdoor temp. of 35°CDB. Heating: Indoor temp. of 20°CDB, and outdoor temp. of 7°CDB, 6°CWB.

2. SEER/SCOP are based on EN14825:2018 and Commission regulation (EU) No.2016/2281. Temperature conditions for calculating SCOP are based on "Average climate" 3. Sound level indicates the value in an anechoic chamber. During operation these values are somewhat higher due to ambient conditions.

4. 'tonne(s) of CO2 equivalent' means a quantity of greenhouse gases- expressed as the product of the weight of the greenhouse gases in metric tonnes and of their global warming potential.

5. Refrigerant contained in the products is a fluorinated greenhouse gas listed in Regulation (EU) No 517/2014.

KXZ Heat pump systems

32~36 HP (89.5kw ~ 100.5kw)

ντει

Technical focus

- Available in the R32 refrigerant
- New exterior design containing cutting edge technology
- High SCOP & SEER with advanced technology
- VTCC+ : advanced variable temperature and capacity control
- Compact design with a small total footprint
- Advanced continuous heating

Specifications

Item	N	lodel	FDC900KXZVE3	FDC950KXZVE3	FDC1000KXZVE3							
			280KXZE3	280KXZE3	335KXZE3							
Combination (FDC)		280KXZE3	335KXZE3	335KXZE3							
			335KXZE3	335KXZE3	335KXZE3							
Nominal horse po	wer		32HP	36HP								
Power source			3 Phase 380-415V, 50Hz									
Nominal	Cooling	L/M	89.5	95.0	100.5							
capacity	Heating	KVV	89.5	95.0	100.5							
Max heating capa	city	kW	100.5	106.5	112.5							
Power	Cooling	LAM	25.8	27.4	29.0							
consumption	Heating	KVV	20.7	22.3	23.9							
EER			3.47	3.46	3.46							
COP			4.32 4.25 4.20									
SEER			8.81	8.68	8.57							
SCOP			4.72	4.69	4.67							
Net weight kg		kg	798	810	822							
Starting current		A		15								
Max current		A	72.1	74.6	77.1							
Pofrigorant	Type/GWP			R32 / 675								
nemgerant	Charge	kg	7.1×2 + 7.7	7.1 + 7.7×2	7.7×3							
	Liquid			ø15.88(5/8")								
Refrigerant piping size	Gas	mm (in)		ø34.92(1 3/8")								
p.p	Oil equalization	(,		ø12.7(1/2")								
Total piping lengt	h	m		1000								
Outdoor operating	Cooling	°CDB		-15 ~ 52								
temperature range	Heating	°CWB		-25 ~ 16								
Capacity connecti	on	%		50 ~ 150								
Number of connecta	able indoor u	units		80								

1. The data are measured under the following conditions (ISO-T1, H1). Cooling: Indoor temp. of 27°CDB, 19°CWB, and outdoor temp. of 35°CDB. Heating: Indoor temp. of 20°CDB, and outdoor temp. of 7°CDB, 6°CWB. 2. SEER/SCOP are based on EN14825:2018 and Commission regulation (EU) No.2016/2281. Temperature conditions for calculating SCOP are based on "Average climate". 3. Sound level indicates the value in an anechoic chamber. During operation these values are somewhat higher due to ambient conditions.

4. 'tonne(s) of CO2 equivalent' means a quantity of greenhouse gases- expressed as the product of the weight of the greenhouse gases in metric tonnes and of their global warming potential.

5. Refrigerant contained in the products is a fluorinated greenhouse gas listed in Regulation (EU) No 517/2014.

Time Saving Software

BIM (Building In

(Building Information Modelling)

We can provide high quality Building Information Modelling (BIM) models in three formats:

Revit 3D Cad

3. IFC

(IFC provides an interoperability solution between different software applications. The format establishes international standards to import and export building objects and their properties)

How and why BIM is used

BIM enables all disciplines of a project (Architects, engineers, quantity surveyors, contractors, clients etc..) to share a common model and data representing the project they are building.

- Better design visualization
- BIM reduces conflicts and changes during construction
- Increases overall accuracy of project documentation
- Improves cost estimating
- Makes energy analysis more efficient
- Simplifies reporting and scheduling

e-seasonal

e-seasonal is an application for our Air cooled VRF Outdoor unit selection. By selecting a combination of systems, location and occupancy profiles you can simulate:

- 1. Annual seasonal efficiency calculation
- 2. Annual energy consumption, cost and CO₂ emission estimation
- 3. Comparison with multiple solutions including conventional heaters

It is possible to download to your PC for an offline version or using a web browser for an online version. e-seasonal provides solution suggestions according to your requested design conditions.

e-solution

Use our e-solution design software tool to find the latest specifications for our KXZ VRF systems. This software helps to simplify the processes to enable engineers to select the most suitable indoor units, outdoor units, pipework, controls & calculate any additional required refrigerants.

If you're an engineer interested in using e-solution, please register and download the e-solution via https://mhiae.com/e-solution/ and be sure to download the latest updates when available.

Please be aware that this tool was developed to cater for the design of two and three pipe systems, and specifies the appropriate models and sizes. It also generates wiring diagrams and engineering drawing to export to AutoCAD or PDF. This flexibility allows engineers to print selected design information and technical data to present to potential clients. As well as personalising the design information into their own formats and documents for future proposals.

MHI e-service App

MHI e-service application is available & free to download to both IOS and Android devices.

The application covers "Mitsubishi Heavy Industries Thermal Systems, Ltd" Air conditioning systems: Split (RAC & PAC), VRF, Q-ton & AtoW.

This "MHI e-service" Application enables field engineers to make: A quick search of the meaning of error codes that may appear when there is a malfunction in a "Mitsubishi Heavy Industries Thermal Systems, Ltd" Air conditioning system, and the probable cause for the malfunction. Scan the unit's QR code and search the meaning of error codes depending

on the model type Additional refrigerant charge calculation for Split (PAC, RAC) & VRF Currently available in English & Spanish languages and Italian

To download the App go to:

"Android" and "Google Play" are trademarks or registered trademarks of Google LLC. "iPhone" is a trademark of Apple Inc. registered in the U.S. and other countries.

Building Management Systems

Our company offers a wide range of control options for the KXZ system to suit any application, large or small, as well as connection to a new or existing BMS.

BACnet gateway SC-WBGW256

Direct Connection to VRF outdoor units

The gateway is directly connected to the outdoor unit's communication bus and enables the control of all the indoor units connected to the system. This allows not only the control and monitoring of the main AC functions but the access to some internal variables of the outdoor units.

Controls network overview

Our company offers simplicity in installation with the highly sophisticated SUPERLINK-I Control System

This offers building owners and occupiers a comprehensive control and management system while providing complete commissioning and service maintenance assistance for installers and service engineers.

The SUPERLINK-I is an advanced high speed data transmission system which can connect up to 128 indoor units and 32 outdoor units onto one network.

A wide range of control options are available for the SUPERLINK-I network to suit any application large or small, as well as connection to a new or existing Building Management System (BMS).

Environmental

Mitsubishi Heavy Industries, Ltd. (MHI), are unswervingly dedicated to facing the challenges of the future.

MHI are dedicated to supporting global sustainability by offering the most energy efficient air-conditioning systems. Through our in-depth research and development, we are able to incorporate new technologies within our units to maximise their energy efficiency and significantly reduce carbon emissions.

Environmental Impact

MHI recognises the increasing importance of reducing carbon emissions as this is becoming a priority when selecting air and water distribution systems. Furthermore new technologies are constantly being developed to help meet heating and cooling requirements as well as environmental objectives. The future of our planet rests in the sustained evolution of humankind while caring, with love and responsibility, for all life forms that inhabit it. Therefore MHI will continue to develop new technologies and products and will remain competitive in the market to achieve a sustainable future.

Mitsubishi Heavy Industries Thermal Systems, Ltd. (Wholly-owned subsidiary of MITSUBISHI HEAVY INDUSTRIES, LTD.)

2-3 Marunouchi 3-chome, Chiyoda-ku, Tokyo 100-8332, Japan https://www.mhi-mth.co.jp/en/

 Certified ISO 9001
 Certified ISO 14001 certified

 Image: Certified ISO 9001
 Image: Certified ISO 14001

 Image: Certified ISO 9001
 Image: Certified ISO 9001

 Image: Certified ISO 9001
 Image: Certified ISO 9001